50 research outputs found

    A toolbox for parameter-free predictions of solid-state properties of monodisperse glassy polymers with frozen-in molecular orientation

    Get PDF
    A toolbox that allows designers to predict the properties of oriented glassy polymers using only existing material constants is constructed from a constitutive model applicable to both polymer solids and polymer melts. Two solid-state properties of practical engineering interest are considered: optical birefringence, and craze initiation stress. Predictions from the toolbox are compared to new experimental measurements on well characterized grades of monodisperse polystyrene, and confirm that the toolbox can account for the effect of polymer molecular weight

    Modeling non-linear rheology of PLLA : comparison of Giesekus and Rolie-Poly constitutive models

    Get PDF
    Rheological models for biobased plastics can assist in predicting optimum processing parameters in industrial forming processes for biobased plastics and their composites such as film blowing, or injection stretch-blow molding in the packaging industry. Mathematical descriptions of polymer behavior during these forming processes are challenging, as they involve highly nonlinear, time-, temperature-, and strain-dependent physical deformation processes in the material, and have not been sufficiently tested against experimental data in those regimes. Therefore, the predictive capability of two polymer models, a classical Giesekus and a physically-based Rolie-Poly, is compared here for extensional and shear rheology data obtained on a poly(L-lactide) (PLLA) across a wide range of strain rates of relevance to those forming processes. Generally, elongational and shear melt flow behavior of PLLA was predicted to a satisfactory degree by both models across a wide range of strain rates (for strain rates 0.05–10.0 s−1), within the strain window up to 1.0. Both models show a better predictive capability for smaller strain rates, and no significant differences between their predictions were found. Hence, as the Giesekus model generally needs a smaller number of parameters, this class of models is more attractive when considering their use in computationally demanding forming simulations of biobased thermoplastics

    Large deformations in oriented polymer glasses: experimental study and a new glass-melt constitutive model

    Get PDF
    An experimental study was made of the effects of prior molecular orientation on large tensile deformations of polystyrene in the glassy state. A new hybrid glass-melt constitutive model is proposed for describing and understanding the results, achieved by parallel coupling of the ROLIEPOLY molecularly-based melt model with a model previously proposed for polymer glasses. Monodisperse and polydisperse grades of polystyrene are considered. Comparisons between experimental results and simulations illustrate that the model captures characteristic features of both the melt and glassy states. Polystyrene was stretched in the melt state and quenched to below Tg, and then tensile tested parallel to the orientation direction near the glass transition. The degree of strain-hardening was observed to increase with increasing prior stretch of molecules within their entanglement tubes, as predicted by the constitutive model. This was explored for varying temperature of stretching, degree of stretching, and dwell time before quenching. The model in its current form, however, lacks awareness of processes of subentanglement chain orientation. Therefore, it under-predicts the orientation-direction strain hardening and yield stress increase, when stretching occurs at the lowest temperatures and shortest times, where it is dominated by subentanglement orientation

    A method for the determination and correction of the effect of thermal degradation on the viscoelastic properties of degradable polymers

    Get PDF
    Small amplitude oscillatory shear is carried out during isothermal degradation of poly(lactic acid) (PLA) in order to determine the evolution of the characteristic relaxation time with degradation time and temperature. After reducing the relaxation time data to a single mastercurve, a 4-parameter function is fitted to the data to allow prediction of the change in relaxation time following an arbitrary thermal history. The method enables separation of the effects of temperature and of degradation on the relaxation time, both of which lead to a horizontal shift of dynamic data along the frequency axis, and hence enable a correction for thermal degradation during rheometry to be carried out. To validate the method, two isothermal frequency sweeps were measured with different temperature histories, producing different mastercurves due to dissimilar in-test thermal degradation. After correcting for thermal degradation using the function and the thermal histories, the two frequency sweeps reduce to the same viscoelastic mastercurve in the undegraded pre-test state

    An adaptable flexural test fixture for miniaturised polymer specimens

    Get PDF
    An adaptable flexural test fixture is proposed to characterise the mechanical properties of miniature beam specimens (≤10 mg) at ambient conditions or in the presence of fluids at elevated temperatures. The fixture is validated using representative amorphous and semi-crystalline polymers. The response of miniature specimens is compared against that of medium-sized specimens (≤1 g) on the same fixture and on conventional test equipment. Good agreement is found between the specimen sizes for all materials, but the comparisons highlight small differences attributed to factors such as specimen dimensional accuracy, crystallinity and span-to-thickness ratios. Flexural tests in water at 37 o C using both specimen sizes were performed to investigate the evolution of mechanical behaviour of hydrolytically degraded polylactides. Here, specimen size influences the diffusion timescale of acidic by-products which can reduce or enhance autocatalysis

    A phenomenological constitutive model for the viscoelastic deformation of elastomers

    Get PDF
    This study proposes a one-dimensional constitutive model for elastomeric materials based on recent observations regarding the separation of elastic and viscous contributions in uniaxial cyclic tensile experiments on EPDM rubber. The focus is on capturing the changes in constitutive behaviour and energy dissipation associated with the Mullins effect. In the model, this is achieved through the evolution of both permanent set and hyperelastic parameters of an Edwards-Vilgis function to account for the Mullins effect, and with a viscosity associated with the effective stretch rate of the network to describe the non-linear flow stress. The simulations are able to reproduce the observed constitutive response and its change with increasing levels of pre-deformation. The model is less able to accurately reproduce the virgin loading response, which is achieved via extrapolation to zero pre-strain. However, for practical purposes, where scragging of elastomeric products is the norm, the model is able to predict the cyclic response and the dissipated energy, and their change with different scragging levels in good agreement with experimental data

    Modeling non-linear rheology of PLLA: comparison of Giesekus and Rolie-Poly constitutive models

    Get PDF
    Rheological models for biobased plastics can assist in predicting optimum processing parameters in industrial forming processes for biobased plastics and their composites such as film blowing, or injection stretch-blow molding in the packaging industry. Mathematical descriptions of polymer behavior during these forming processes are challenging, as they involve highly nonlinear, time-, temperature-, and strain-dependent physical deformation processes in the material, and have not been sufficiently tested against experimental data in those regimes. Therefore, the predictive capability of two polymer models, a classical Giesekus and a physically-based Rolie-Poly, is compared here for extensional and shear rheology data obtained on a poly(L-lactide) (PLLA) across a wide range of strain rates of relevance to those forming processes. Generally, elongational and shear melt flow behavior of PLLA was predicted to a satisfactory degree by both models across a wide range of strain rates (for strain rates 0.05–10.0 s−1), within the strain window up to 1.0. Both models show a better predictive capability for smaller strain rates, and no significant differences between their predictions were found. Hence, as the Giesekus model generally needs a smaller number of parameters, this class of models is more attractive when considering their use in computationally demanding forming simulations of biobased thermoplastics

    The role of deformation history on stress relaxation and stress memory of filled rubber

    Get PDF
    Although the magnitudes of inelastic and viscoelastic effects in filled rubbers are small relative to that of the elastic response, these effects are nevertheless critical in applications such as gaskets, seals and dampers. This study investigates the role of deformation history on relaxation of rubber through time-dependent experiments following a range of deformation histories. Two grades of carbon-black filled EPDM were subjected to uniaxial tensile deformation followed by stress-relaxation or stress memory at fixed deformation. Stress relaxation was found to be highly dependent on strain levels following a single loading. When an additional load-unload cycle was added to the history, the rubbers relaxed an approximately constant fraction of stress after a given time, provided that the strain at stress relaxation was smaller than the historical maximum. This fraction was independent of both the applied strain and of the maximum strain, and suggests that the relaxation process is independent of scragging procedures used to control the modulus. Stress memory observed following load-unload cycles was also approximately independent of strain history

    Rheological techniques for determining degradation of polylactic acid in bioresorbable medical polymer systems

    Get PDF
    © 2015 AIP Publishing LLC. A method developed in the 1980s for the conversion of linear rheological data to molar mab distribution is revisited in the context of degradable polymers. The method is first applied using linear rheology for a linear polystyrene, for which all conversion parameters are known. A proof of principle is then carried out on four polycarbonate grades. Finally, preliminary results are shown on degradable polylactides. The application of this method to degrading polymer systems, and to systems containing nanofillers, is also discubed. This work forms part of a wider study of bioresorbable nanocomposites using polylactides, novel hydroxyapatite nanoparticles and tailored dispersants for medical applications

    Durability enhancement of low ice adhesion polymeric coatings

    Get PDF
    Icephobic performance of low-ice adhesion polymeric coatings has been studied intensively for passive ice protection. However, limited efforts were conducted to identify strategies for enhancing the durability of the coatings to maintain low ice adhesion after erosion impact. In this work, we developed and investigated several polyurethane-based nanocomposite and fibre-reinforced coatings to understand the deteriorating behaviour of the coatings under rigorous impinging erosion tests and the subsequent impact on ice adhesion. The inclusion of fillers resulted in up to 38 points increase in Shore hardness relative to the pristine PU coatings. The ice adhesion strengths on 3 wt% nanoparticle-reinforced coatings after the erosion tests were nearly halved, whereas, a 5-fold reduction was observed on 3 wt% fibre-reinforced coatings compared to that of the pure PU coatings. Our results indicated that the incorporation of fillers was effective in reducing the ice anchoring points, and that, after the impingement, the icephobic performance was retained by either lowering surface roughness or by minimizing surface deterioration. Fibres took a more effective role in limiting crack initiation and resisting crack propagation. The ice adhesion strength of the coatings increased from 5.6 kPa to 8.4 kPa with 20 wt% carbon fibres incorporated PU coatings, essentially keeping the adhesion below 10 kPa even after rigorous impinging tests and a ∼10-fold reduction in ice adhesion strength as compared to the pure PU coatings. The incorporation of the fibres led to enhanced durability and retention of excellent icephobic performance via a mechanism that is adaptable to other polymeric coatings
    corecore